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Abstract. We study the BRST symmetries in the SU(3) linear sigma model which is constructed through
the introduction of a novel matrix for the Goldstone boson fields satisfying geometrical constraints embed-
ded in a SU(2) subgroup. To treat these constraints we exploit the improved Dirac quantization scheme.
We also discuss phenomenological aspects in the mean field approach to this model.

1 Introduction

There have recently been considerable discussions con-
cerning the strangeness in hadron physics. The SAMPLE
experiment [1] reported the proton’s neutral weak mag-
netic form factor, which has been suggested by the neutral
weak magnetic moment measurement through parity vio-
lating electron scattering [2]. In fact, the SAMPLE Col-
laboration obtained the positive experimental result for
the proton strange magnetic form factor [1] Gs

M (Q2 =
0.1(GeV/c)2) = +0.14±0.29 (stat)±0.31 (sys). This pos-
itive experimental value is contrary to the negative values
of the proton strange form factor which results from most
of the model calculations except the predictions [3] based
on the SU(3) chiral bag model [4] and the recent predic-
tions of the chiral quark soliton model [5] and the heavy
baryon chiral perturbation theory [6]. (See [7] for more
details.)

It is also well known in strangeness hadron physics
that kaon condensation [8–11] in nuclear dense matter may
have an impact on the formation of low mass black holes
instead of neutron stars for masses on the order of 1.5 solar
masses [12]. Beginning with the proposal of kaon conden-
sation in 1986 [8], the theory of kaon condensation in dense
matter has become one of the central issues in nuclear
physics and astrophysics together with the supernova col-
lapse. The K− condensation at a few times nuclear matter
density was later interpreted [9] in terms of cleaning of q̄q
condensates from the quantum chromodynamics vacuum
by dense nuclear matter and also in terms of phenomeno-
logical off-shell meson–nucleon interactions [13]. Recently,
kaon condensation was revisited in the context of the color
superconductivity in the color–flavor-locking phase [11]

On the other hand, the Dirac method [14] is a well-
known formalism to quantize physical systems with con-
straints. In this method, the Poisson brackets in a second-
class constraint system are converted into Dirac brackets
to attain self-consistency. The Dirac quantization scheme

has also been applied to nuclear phenomenology [15,16].
The Dirac brackets, however, are generically field-depen-
dent, being nonlocal, and they contain problems related to
the ordering of field operators. These features are unfavor-
able for finding canonically conjugate pairs. However, if a
first-class constraint system can be constructed, one can
avoid introducing the Dirac brackets and can instead use
Poisson brackets to arrive at the corresponding quantum
commutators. To overcome the above problems, Batalin,
Fradkin, and Tyutin [17] developed a method which con-
verts the second-class constraints into first-class ones by
introducing auxiliary fields. Recently, this improved Dirac
formalism has been applied to several models of current in-
terest. (See [7] for more details.) In particular, the relation
between the standard Dirac and improved Dirac schemes
was clarified in the SU(2) skyrmion model by introducing
additional correction terms [18]. Recently, the improved
Dirac Hamiltonian method was also applied to the SU(2)
and SU(3) skyrmion models [19,20] to construct a first-
class Hamiltonian and the BRST symmetries, and to the
superqualiton model [21] to investigate the color super-
conductivity in color–flavor-locking phase. Moreover, the
BRST symmetry [22] has been studied [19] in the SU(2)
skyrmion in the framework of the BFV formalism [23]
which is applicable to theories with first-class constraints
by introducing canonical sets of ghosts and anti-ghosts
together with auxiliary fields. The BRST symmetry can
also be constructed by using the residual gauge symmetry
interpretation of the BRST invariance [24].

The motivation of this paper is to systematically ap-
ply the improved Dirac scheme [17,7] to the SU(3) lin-
ear sigma model to construct the BRST symmetries in
this phenomenological model. In Sect. 2 we construct the
SU(3) linear sigma model by introducing a novel matrix
for the Goldstone bosons which satisfy geometrical sec-
ond-class constraints. To treat these constraints we exploit
the improved Dirac scheme to convert the second-class
constraints into first-class ones. In Sect. 3 we construct
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first-class physical fields and directly derive a compact
expression of a first-class Hamiltonian in terms of these
fields. We construct in Sect. 4 the BRST invariant effec-
tive Lagrangian and its corresponding BRST transforma-
tion rules in the SU(3) linear sigma model. In Sect. 5 we
discuss the phenomenology of the pion and kaon conden-
sates.

2 Model and constraints

In this section we apply the improved Dirac scheme [17,7]
to the SU(3) linear sigma model, which is a second-class
constraint system. We start with the SU(3) linear sigma
model Lagrangian of the form

L =
∫

d3x

[
1
2

tr(∂µM∂µM†)

− 1
2
µ2

0tr(MM†) − 1
4
λ0[tr(MM†)]2

+ ψ̄iγµ∂µψ − g0(ψ̄LMψR + ψ̄RM
†ψL)

]
, (2.1)

where we have introduced a novel matrix for the Goldstone
bosons satisfying geometrical second-class constraints1

M =
1√
2

(σλ0 + iπaλa), a = 1, · · · , 8, (2.2)

with λ0 = (2/3)1/2I (I is the identity) and the Gell-Mann
matrices normalized to satisfy λaλb = (2/3)δab + (ifabc +
dabc)λc. Here we have meson fields πa = (πi, πM , π8) with
πi, πM and π8 being the pion, kaon and eta fields, respec-
tively, and the chiral fields ψL and ψR defined as

ψR,L =
1 ± γ5

2
ψ. (2.3)

Note that we have used the SU(3) linear sigma model
with the U(3) × U(3) group structure so that we could
incorporate the σ field consistently, as in the chiral bag
model [26].

The Lagrangian (2.1) can then be rewritten in terms
of the meson fields πa as follows:

L =
∫

d3x

[
1
2

(∂µσ∂µσ + ∂µπa∂
µπa)

− 1
2
µ2

0(σ2 + πaπa) − 1
4
λ0(σ2 + πaπa)2

+ ψ̄iγµ∂µψ − g0ψ̄
1√
2

(σ + iγ5πaλa)ψ
]
, (2.4)

where we have assumed the SU(3) flavor symmetry for
simplicity. Here the sigma and pion fields (σ, πi) are con-
strained to satisfy the geometric constraints on the SU(2)
subgroup manifold

1 In previous works [25], authors have used a different ansatz
for M such as M =

∑8
i=0(σ

′
i + iπi)λi/(21/2) with nonets of

scalar σ′
i and pseudoscalar fields πi which transform according

to the 3 ⊗ 3̄ + 3̄ ⊗ 3 representation of SU(3)×SU(3)

Ω1 = σ2 + πiπi − f2
π ≈ 0. (2.5)

Now it seems appropriate to comment on the chiral matrix
M in (2.2) and the constraint Ω1 in (2.5). The chiral ma-
trix M breaks the SU(3) × SU(3) symmetries except the
SUV (3) channel. However, in real physics the SU × SU(3)
symmetries are broken so that our ansatz for M is phe-
nomenologically more realistic than that in the literature
[25]. Furthermore the SUV (3) symmetry is also broken
due to the direct SUV (3) breaking. Even though we have
assumed the SUV (3) symmetry in the Lagrangian (2.4)
without an explicit SUV (3) breaking term for simplicity,
the geometrical constraint should break this SUV (3) sym-
metry and instead respect the SU(2) flavor symmetry as
in (2.5).

By performing the Legendre transformation, one can
obtain the canonical Hamiltonian,

Hc =
∫

d3x

[
1
2
(
π2
σ + πaππ

a
π

)
+

1
2

((∂iσ)2 + (∂iπa)2)

+
1
2
µ2

0(σ2 + πaπa) +
1
4
λ0(σ2 + πaπa)2

+ ψ̄iγi∂iψ + g0ψ̄
1√
2

(σ + iγ5πaλa)ψ
]
, (2.6)

where πσ and πaπ are the canonical momenta conjugate to
the fields σ and πa, respectively, given by

πσ = σ̇, πaπ = π̇a (2.7)

and we have used ψ̄ for the canonical momenta conjugate
to the fields ψ instead of π†

ψ = iψ† for simplicity.
Now we want to construct Noether currents under the

SU(3)L × SU(3)R local group transformation. Under an
infinitesimal isospin transformation in the SU(3) flavor
channel [7]

ψ → ψ′ = (1 − iεaQ̂a)ψ,

M → M ′ = (1 − iεaQ̂a)M(1 + iεaQ̂a), (2.8)

where εa(x) are the local angle parameters of the group
transformation and Q̂a = λa/2 are the SU(3) flavor charge
operators given by the generators of the symmetry, the
Noether theorem yields the conserved flavor octet vector
currents (FOVC) for the Lagrangian (2.4)

JµaV = ψ̄γµQ̂aψ +
i
2

tr
(

[M, Q̂a]∂µM† + ∂µM [M†, Q̂a]
)
.

(2.9)
In addition one can see that the electromagnetic (EM) cur-
rents JµEM can be easily constructed by replacing the SU(3)
flavor charge operators Q̂a with the EM charge operator
Q̂EM = Q̂3 + (1/(31/2))Q̂8 in the FOVC (2.9). Moreover
one can obtain the charge density ρ as follows:

ρ = ψ†Q̂EMψ +
(
f3ab +

1√
3
f8ab

)
πaπ

b
π. (2.10)

Now we introduce the chemical potentials µ = (µπ, µK)
corresponding to the charge densities ρ = (ρπ, ρK) in the
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pion and kaon flavor channels to yield the Hamiltonian in
the kaon condensed matter:

H = Hc + µπρπ + µKρK , (2.11)

where the charge densities are now explicitly given by

ρπ = ψ†(Q̂u + Q̂d)ψ + π1π
2
π − π2π

1
π,

ρK = ψ†Q̂sψ + π4π
5
π − π5π

4
π, (2.12)

with Q̂q being the q-flavor EM charge operators. Here we
have ignored the beta equilibrium for simplicity. Note that
by defining the flavor projection operators

P̂u,d =
1
3

± 1
2
λ3 +

1
2
√

3
λ8, P̂s =

1
3

− 1
2
√

3
λ8, (2.13)

satisfying P̂ 2
q = P̂q and

∑
q P̂q = 1, one can easily con-

struct the q-flavor EM charge operators Q̂q = Q̂EMP̂q =
QqP̂q.

On the other hand, the time evolution of the constraint
Ω1 yields an additional secondary constraint

Ω2 = σπσ + πiπ
i
π ≈ 0, (2.14)

and Ω1 and Ω2 form a second-class constraint algebra:

∆kk′(x, y) = {Ωk(x), Ωk′(y)}
= 2εkk

′
(σ2 + πiπi)δ(x − y), (2.15)

with ε12 = −ε21 = 1.
Using the Dirac brackets [14] defined by

{A(x), B(y)}D = {A(x), B(y)} (2.16)

−
∫

d3zd3z′{A(x), Ωk(z)}∆kk′{Ωk′(z′), B(y)},

with ∆kk′
being the inverse of ∆kk′ in (2.15), we obtain

the following commutators:

{σ(x), σ(y)}D = {πσ(x), πσ(y)}D = 0,

{σ(x), πσ(y)}D =
(

1 − σ2

σ2 + πkπk

)
δ(x − y),

{πa(x), πb(y)}D = 0,

{πa(x), πbπ(y)}D =
(
δab − πiπj

σ2 + πkπk
δaiδbj

)
δ(x − y),

{πaπ(x), πbπ(y)}D =
1

σ2 + πkπk

(
πjπ

i
π − πiπ

j
π

)
× δaiδbjδ(x − y),

{ψ(x), ψ(y)}D = {π†
ψ(x), π†

ψ(y)}D = 0,

{ψ(x), π†
ψ(y)}D = δ(x − y). (2.17)

Following the improved Dirac formalism [17,7] which
systematically converts the second-class constraints into
first-class ones, we introduce two auxiliary fields (θ, πθ)
with the Poisson brackets

{θ(x), πθ(y)} = εijδ(x − y). (2.18)

The first-class constraints Ω̃i are then constructed as

Ω̃1 = Ω1 + 2θ, Ω̃2 = Ω2 − (σ2 + πkπk)πθ, (2.19)

which satisfy the closed algebra {Ω̃i(x), Ω̃j(y)} = 0.

3 First-class Hamiltonian

Now, following the improved Dirac formalism [17,7], we
construct the first-class physical fields F̃ = (σ̃, π̃a, ψ̃, π̃σ,
π̃aπ, π̃ψ) corresponding to the original fields F = (σ, πa, ψ,
πσ, π

a
π, πψ). The F̃ ’s, which reside in the extended phase

space, are obtained as a power series in the auxiliary fields
(θ, πθ) by demanding that they are strongly involutive:
{Ω̃i, F̃} = 0. After some lengthy algebra, we obtain the
first-class physical fields:

σ̃ = σ

(
σ2 + πkπk + 2θ

σ2 + πkπk

)1/2

,

π̃i = πi

(
σ2 + πkπk + 2θ

σ2 + πkπk

)1/2

,

π̃σ = (πσ − σπθ)
(

σ2 + πkπk
σ2 + πkπk + 2θ

)1/2

,

π̃iπ = (πiπ − πiπθ)
(

σ2 + πkπk
σ2 + πkπk + 2θ

)1/2

,

π̃ā = πā, π̃āπ = πāπ, ψ̃ = ψ, π̃†
ψ = π†

ψ, (3.1)

with the new notation ā = 4, 5, 6, 7, 8.
Since any functional of the first-class fields F̃ is also

first class, we can construct a first-class Hamiltonian in
terms of the above first-class physical variables as follows:

H̃ =
∫

d3x

[
1
2
(
π̃2
σ + π̃aππ̃

a
π

)
+

1
2

((∂iσ̃)2 + (∂iπ̃a)2)

+
1
2
µ2

0(σ̃2 + π̃aπ̃a) +
1
4
λ0(σ̃2 + π̃aπ̃a)2 + µπρ̃π

+ µK ρ̃K + ˜̄ψiγi∂iψ̃ + g0
˜̄ψ

1√
2

(σ̃ + iγ5π̃aλa)ψ̃
]
. (3.2)

We then directly rewrite this Hamiltonian in terms of
the original as well as auxiliary fields2 to obtain

H̃ =
∫

d3x

[
1
2

(
(πσ − σπθ)

2

+
(
πiπ − πiπθ

)2) σ2 + πkπk
σ2 + πkπk + 2θ

+
1
2
πāππ

ā
π

+
1
2

((∂iσ)2 + (∂iπk)2

+ µ2
0(σ2 + πiπi))

σ2 + πkπk + 2θ
σ2 + πkπk

+
1
2

(∂iπā)2

+
1
2
µ2

0πāπā +
1
4
λ0(σ2 + πiπi)2

(
σ2 + πkπk + 2θ

σ2 + πkπk

)2

+
1
4
λ0(πāπā)2 +

1
2
λ0πāπā(σ2 + πiπi + 2θ) + µπρπ

+ µKρK + ψ̄iγi∂iψ

+ g0ψ̄
1√
2

(σ + iγ5πiτi)ψ
(
σ2 + πkπk + 2θ

σ2 + πkπk

)1/2

2 In deriving the first-class Hamiltonian H̃ of (3.3), we have
used the conformal map condition, σ∂iσ + πk∂iπk = 0
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+ g0ψ̄
1√
2

iγ5πāλāψ

]
, (3.3)

where we observe that the forms of the first two terms in
this Hamiltonian are exactly the same as those of the O(3)
nonlinear sigma model [27].

Now we notice that, even though H̃ is strongly invo-
lutive with the first-class constraints {Ω̃i, H̃} = 0, it does
not naturally generate the first-class Gauss law constraint
from the time evolution of the constraint Ω̃1. By intro-
ducing an additional term proportional to the first-class
constraints Ω̃2 into H̃, we then obtain an equivalent first-
class Hamiltonian:

H̃ ′ = H̃ +
∫

d3x πθΩ̃2, (3.4)

which naturally generates the Gauss law constraint

{Ω̃1, H̃
′} = 2Ω̃2, {Ω̃2, H̃

′} = 0. (3.5)

One notes here that H̃ and H̃ ′ act in the same way on
physical states, which are annihilated by the first-class
constraints. Similarly, the equations of motion for observ-
ables remain unaffected by the additional term in H̃ ′. Fur-
thermore, on the zero locus of the constraints (θ, πθ), our
first-class system is exactly reduced to the original second-
class one.

Next, we consider the Poisson brackets of the fields in
the extended phase space F̃ and identify the Dirac brack-
ets by taking the vanishing limit of auxiliary fields. After
some algebraic manipulation starting from (3.1), one can
obtain the commutators

{σ̃(x), σ̃(y)} = {π̃σ(x), π̃σ(y)} = 0,

{σ̃(x), π̃σ(y)} =
(

1 − σ̃2

σ̃2 + π̃kπ̃k

)
δ(x − y),

{π̃a(x), π̃b(y)} = 0,

{π̃a(x), π̃bπ(y)} =
(
δab − π̃iπ̃j

σ̃2 + π̃kπ̃k
δaiδbj

)
δ(x − y),

{π̃aπ(x), π̃bπ(y)} =
1

σ̃2 + π̃kπ̃k

(
π̃j π̃

i
π − π̃iπ̃

j
π

)
× δaiδbjδ(x − y),

{ψ̃(x), ψ̃(y)} = {π̃†
ψ(x), π̃†

ψ(y)} = 0,

{ψ̃(x), π̃†
ψ(y)} = δ(x − y). (3.6)

One notes here that on the zero locus of the constraints
(θ, πθ), the above Poisson brackets in the extended phase
space exactly reproduce the corresponding Dirac brack-
ets (2.17). It is also noteworthy that the Poisson brack-
ets of the fields F̃ in (3.6) have exactly the same form
as those of the Dirac brackets of the field F , yielding
{Ã, B̃} = {A,B}D|A→Ã,B→B̃ . On the other hand, this
kind of situation occurs again when one considers the first-
class constraints (2.19). More precisely, these first-class
constraints in the extended phase space can be rewritten
as

Ω̃1 = σ̃2 + π̃iπ̃i − f2
π , Ω̃2 = σ̃π̃σ + π̃iπ̃

i
π, (3.7)

which are form-invariant with respect to the second-class
constraints (2.5) and (2.14).

4 BRST symmetries

In this section, we will obtain the BRST invariant La-
grangian in the framework of the BFV formalism [23]
which is applicable to theories with the first-class con-
straints by introducing two canonical sets of ghosts and
anti-ghosts together with auxiliary fields (Ci, P̄i), (Pi, C̄i),
(N i, Bi) (i = 1, 2), which satisfy the super-Poisson algebra

{Ci(x), P̄j(y)} = {Pi(x), C̄j(y)} = {N i(x), Bj(y)}
= δijδ(x − y). (4.1)

Here the super-Poisson bracket is defined by

{A,B} =
δA

δq

∣∣∣∣
r

δB

δp

∣∣∣∣
l
− (−1)ηAηB

δB

δq

∣∣∣∣
r

δA

δp

∣∣∣∣
l
, (4.2)

where ηA denotes the number of fermions, called the ghost
number, in A and the subscript r and l right and left
derivatives.

In this phenomenological SU(3) linear sigma model,
the nilpotent BRST charge Q, the fermionic gauge fixing
function Ψ and the BRST invariant minimal Hamiltonian
Hm are given by

Q =
∫

d3x (CiΩ̃i + PiBi),

Ψ =
∫

d3x (C̄iχi + P̄iN i),

Hm = H̃ ′ −
∫

d3x 2C1P̄2, (4.3)

which satisfy the relations {Q,Hm} = 0, Q2 = {Q,Q} =
0, {{Ψ,Q}, Q} = 0. The effective quantum Lagrangian is
then described by

Leff =
∫

d3x(πσσ̇ + πaππ̇a + π†
ψψ̇ + πθ θ̇

+ B2Ṅ
2 + P̄iĊi + C̄2Ṗ2) − Htot, (4.4)

with Htot = Hm − {Q,Ψ}. Here the B1Ṅ
1 + C̄1Ṗ1 =

{Q, C̄1Ṅ
1} terms are suppressed by replacing χ1 with χ1+

Ṅ1.
Now we choose the unitary gauge

χ1 = Ω1, χ2 = Ω2, (4.5)

and perform the path integration over the fields B1, N1,
C̄1, P1, P̄1 and C1, by using the equations of motion, to
yield the effective Lagrangian of the form

Leff =
∫

d3x

[
πσσ̇ + πaππ̇a + π†

ψψ̇ + πθ θ̇

+ B2Ṅ
2 + P̄2Ċ2 + C̄2Ṗ2
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− R

2

(
(πσ − σπθ)

2 +
(
πiπ − πiπθ

)2)− 1
2
πāππ

ā
π

− 1
2R
(
(∂iσ)2 + (∂iπk)2

)− 1
2

(∂iπā)2

− 1
2
µ2

0

(
1
R

(σ2 + πiπi) + πāπā

)

− 1
4
λ0

(
1
R

(σ2 + πiπi) + πāπā

)2

− ψ̄iγi∂iψ

− g0ψ̄
1√
2R

(σ + iγ5πiτi)ψ − g0ψ̄
1√
2

iγ5πāλāψ

+
(
σπσ + πiπ

i
π − (σ2 + πkπk)πθ

)
(−πθ + N)

− 2(σ2 + πkπk)πθCC̄

+ (σπσ + πiπ
i
π)B + P̄P − µπρπ − µKρK

]
, (4.6)

with the redefinitions: N ≡ N2, B ≡ B2, C̄ ≡ C̄2, C ≡ C2,
P̄ ≡ P̄2, P ≡ P2 and R = (σ2 + πiπi)/(σ2 + πiπi + 2θ).

Next, using the variations with respect to πσ, πaπ, πθ,
P and P̄, one obtains the relations

σ̇ = (πσ − σπθ)R + σ(πθ − N − B),

π̇i = (πiπ − πiπθ)R + πi(πθ − N − B) + µπ(π1δ
2
i − π2δ

1
i ),

π̇ā = πāπ + µK(π4δ
5
ā − π5δ

4
ā),

θ̇ = −σ(πσ − σπθ)R − πi(πiπ − πiπθ)R

+ (σ2 + πiπi)(−2πθ + N + 2CC̄) + σπσ + πiπ
i
π,

P = −Ċ, P̄ = ˙̄C, (4.7)

to yield the effective Lagrangian

Leff =
∫

d3x

[
1

2R
(∂µσ∂µσ + ∂µπi∂

µπi) +
1
2
∂µπā∂

µπā

− 1
2
µ2

0

(
1
R

(σ2 + πiπi) + πāπā

)

− 1
4
λ0

(
1
R

(σ2 + πiπi) + πāπā

)2

+ ψ̄iγµ∂µψ

− g0ψ̄
1√
2R

(σ + iγ5πiτi)ψ − g0ψ̄
1√
2

iγ5πāλāψ

− 1
2R

(σ2 + πiπi)

(
θ̇

σ2 + πkπk
+ (B + 2C̄C)R

)2

+
1
R

(B + N)
(
−θ̇ + (σ2 + πiπi)

×
(

θ̇

σ2 + πkπk
+ (B + 2C̄C)R

))

+ BṄ − C̄∂2
0C − µπρπ − µKρK

]
. (4.8)

Finally, with the identification N = −B + θ̇/(σ2 +
πiπi), one can arrive at the BRST invariant Lagrangian

Leff =
∫

d3x

[
1
2

(∂µσ∂µσ + ∂µπi∂
µπi)

σ2 + πkπk + 2θ
σ2 + πkπk

+
1
2
∂µπā∂

µπā − 1
2
µ2

0(σ2 + πaπa + 2θ)

− 1
4
λ0(σ2 + πaπa + 2θ)2 + ψ̄iγµ∂µψ

− g0ψ̄
1√
2

(σ + iγ5πiτi)ψ
(
σ2 + πkπk + 2θ

σ2 + πkπk

)1/2

− g0ψ̄
1√
2

iγ5πāλāψ − 1
2
σ2 + πkπk + 2θ
(σ2 + πkπk)2

θ̇2

− Ḃθ̇

σ2 + πiπi
− 1

2
(σ2 + πkπk)2

σ2 + πkπk + 2θ
(B + 2C̄C)2

− C̄∂2
0C − µπρπ − µKρK

]
, (4.9)

which is invariant under the BRST transformation

δBσ = λσC, δBπi = λπiC, δBπā = 0, δBψ = λψC,
δBθ = −λ(σ2 + πiπi)C, δB C̄ = −λB, δBC = δBB = 0.

(4.10)

5 Phenomenology and discussion

In this section, to discuss the phenomenological aspects,
we exploit the first-class constraints Ω̃i = 0 in (2.19) for
the Hamiltonian (3.4) to obtain the relation

1
2

(
(πσ − σπθ)

2 +
(
πiπ − πiπθ

)2) σ2 + πkπk
σ2 + πkπk + 2θ

(5.1)

=
1

2f2
π

(
(σ2 + πiπi)

(
π2
σ + πiππ

i
π

)− (σπσ + πiπ
i
π

)2)
.

Following the symmetrization procedure, we then obtain
a Hamiltonian of the form

H̃ =
∫

d3x

[
1
2
(
π2
σ + πiππ

i
π + 1

)
+

1
2
πāππ

ā
π

+
1
2

((∂iσ)2 + (∂iπk)2) +
1
2

(∂iπā)2

+
1
2
µ2

0(σ2 + πiπi) +
1
2
µ2

0πāπā +
1
4
λ0(σ2 + πiπi)2

+
1
4
λ0(πāπā)2 +

1
2
λ0πāπā(σ2 + πiπi)

+ µπρπ + µKρK + ψ̄iγi∂iψ

+ g0ψ̄
1√
2

(σ + iγ5πiτi)ψ + g0ψ̄
1√
2

iγ5πāλāψ

]
. (5.2)

Here one notes that the Weyl ordering correction 1/2 in
the first line of (5.2) originates from the improved Dirac
scheme associated with the geometric constraint (2.5).
Moreover, this correction comes only with the kinetic
terms, without any dependence on the potential terms.

Now we define mean fields for the Goldstone boson
fields as3

〈σ〉 = σ, 〈π±〉 = π±, 〈K±〉 = K±,

〈πσ〉 = pσ, 〈ππ±〉 = pπ± , 〈πK±〉 = pK± ,

others = 0,
(5.3)

3 Here we ignore the eta fields for simplicity
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where

π± =
1√
2

(π1 ∓ iπ2), π0 = π3, K± =
1√
2

(π4 ∓ iπ5),

K0 =
1√
2

(π6 − iπ7), K̄0 =
1√
2

(π6 + iπ7), (5.4)

and we have similar relations for the momenta fields. We
then finally arrive at the energy spectrum of the form
〈H̃〉 =

∫
d3xε with

ε =
1
2
p2
σ + pπ+pπ− + pK+pK− +

1
2

(∂iσ)2 + ∂iπ
+∂iπ

−

+ ∂iK
+∂iK

− +
1
2
µ2

0(σ2 + 2π+π− + 2K+K−)

+
1
4
λ0(σ2 + 2π+π− + 2K+K−)2 + ψ̄iγi∂iψ

+ g0ψ̄

(
1√
2
σ + iγ5(τ+π− + τ−π+ + λ+K− + λ−K+)

)
ψ

+ iµπ(π−pπ+ − π+pπ−) + iµK(K−pK+ − K+pK−)

+ ψ†
(
µπ(Q̂u + Q̂d) + µKQ̂s

)
ψ +

1
2
, (5.5)

where

τ± =
1
2

(τ1 ∓ iτ2), τ0 = τ3, λ± =
1
2

(λ4 ∓ iλ5). (5.6)

Using the variations with respect to pσ, pπ± and pK± , we
obtain the relations

pσ = 0, pπ± = ±iµππ±, pK± = ±iµKK± (5.7)

to yield

σ̇ = 0, π̇± = ±iµππ±, K̇± = ±iµKK±. (5.8)

Substituting (5.7) into the energy spectrum (5.5) and
ignoring the irrelevant term (∂iσ)2, we finally arrive at

ε = ∂iπ
+∂iπ

− + ∂iK
+∂iK

− +
1
2
µ2

0σ
2 − (µ2

π − µ2
0)π+π−

− (µ2
K − µ2

0)K+K−

+
1
4
λ0(σ2 + 2π+π− + 2K+K−)2 + ψ̄iγi∂iψ

+ g0ψ̄

(
1√
2
σ + iγ5(τ+π− + τ−π+ + λ+K− + λ−K+)

)
ψ

+ ψ†
(
µπ(Q̂u + Q̂d) + µKQ̂s

)
ψ +

1
2
, (5.9)

which still respects the SU(3) flavor symmetry.

6 Conclusion

In summary, we constructed the SU(3) linear sigma model
by introducing a novel matrix for the Goldstone bosons
which satisfy geometrical second-class constraints. Follow-
ing the improved Dirac method, we also constructed first-
class physical fields and, in terms of them, we directly

obtained a first-class Hamiltonian which is consistent with
the Hamiltonian with the original fields and auxiliary
fields. The Poisson brackets of the first-class physical fields
are also constructed and these Poisson brackets are shown
to reproduce the corresponding Dirac brackets in the limit
of vanishing auxiliary fields. Exploiting the first-class
Hamiltonian, we constructed the BRST invariant effective
Lagrangian and its corresponding BRST transformation
rules in this phenomenological SU(3) linear sigma model.
Finally, defining the mean fields for the Goldstone bosons
fields, we obtained the energy spectrum of the correspond-
ing pion and kaon condensates. However this energy spec-
trum still possesses the SU(3) flavor symmetry. Through
further investigation, it will be interesting to study the
flavor symmetry breaking effects in the framework of this
SU(3) linear sigma model to predict the more realistic
kaon condensation.
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